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THE DESIGN OF A STRUCTURE that
achieves its highest performance levels with the
least chance of failure can be facilitated by the
mathematically based prediction modeling of
weld behavior in a variety of circumstances.
One aspect of a weldment that can be predicted
with remarkable accuracy, given certain data, is
the transient temperature field. Distortion also
can be predicted with considerable accuracy.
Although residual stresses and microstructure
predictions are less accurate, they are still useful.

At the present time, some aspects of the arc
and the weld pool are difficult to predict.
Although the prediction of specific defects can
be difficult, the conditions that make it likely
for specific kinds of defects to form can be pre-
dicted. This situation is similar to that of pre-
dicting weather conditions that suggest a high
risk of tornadoes, but not being able to predict
individual tornadoes.

Reality, Models, and Mathematics. Like
cartoons, mathematics is not real. Yet, even in
cartoons, some relationship to reality is nearly
always intended. To understand either cartoons
or mathematics, every individual must define
his own relationship to reality.

Unlike cartoons, mathematics has two funda-
mental pillars. A set of axioms, which are
sometimes called assumptions, laws, primitives,
or other terms, is assumed to be given and to be
true. When these assumptions or axioms are
combined in ways that obey a strict logic,
results remain true, that is, for the purposes of
mathematics, rather than for the real world.
The meaning of the axioms, as interpreted in
the real world, is irrelevant to mathematics.
For example, given a sphere of radius r, mathe-
maticians can prove that volume equals
(41r*)/3. Whether any particular ball can actu-
ally be described or approximated as a sphere
of radius r is not a question that mathematics
considers. In fact, one cannot prove that the for-
mula for the volume of a sphere is correct by
measuring the volume of balls. Rather, the
exercise is a matter of judgment and

interpretation for those who are interested in
the volume of a real ball.

This example is presented in order to show
that the confusion and controversy that occur in
the modeling of welds and other areas arises from
a failure to separate mathematics that are correct
from mathematics that represent a useful model
for a particular weld. Although this point is
often not understood, those who can appreciate
it are able to use models more effectively.

Modeling of Welds

The first assumption should be that the weld
has been specified, and therefore, all information
needed to produce the real weld has been given.
This includes the geometry of the welded struc-
ture and the weld joint, the composition of the
base and weld metal, the distribution of input
energy, the preheat temperature, the welding path
and speed, the hydrogen content in the arc, the
start time and start position of each weld pass,
the fixtures, and other factors. It is usually
assumed that the transient temperature field is
the most critical field, in the sense that if this tem-
perature field is wrong, then the predictions of the
model are likely to be wrong. It is also most criti-
cal in the sense that different welds usually have
different temperature fields. After computing
the transient temperature field, the evolution of
microstructure in the heat-affected zone and the
fusion zone is computed. Then the thermal stress,
strain, distortion, and residual stress are com-
puted. The next objective, which is a current
research issue, is to predict the mechanical prop-
erties of the weldment, including fracture tough-
ness, ductile-brittle transition temperature, and
the probability that defects will occur. The ulti-
mate objective is to predict the manufacturing
cost and the reliability of both the weld and the
welded structure.

Computational weld mechanics described in
algorithmic notation comprises the following
steps:

e Define the geometry, material properties,
heat inputs, boundary conditions such as
thermal convection, and mechanical support

e Compute the transient temperature field

e Compute the evolution of microstructure. If
latent heats of transformation are to be
included, then the transient temperature and
evolution of microstructure become an itera-
tive problem.

e Compute the displacement; strain and stress
fields, including the effects of temperature and
microstructure on material properties; thermal
expansion; and phase transformations. Usually,
a thermoelastoplastic stress-strain relationship
is used. The displacement or distortion can sig-
nificantly impact the cost of welding.

e Estimate material properties of the weld-
ment, the probability of defects, and the risk
of failure due to fatigue, ductile or brittle
facture, and corrosion. Although very little
research has been published on this step, it
is clearly an important objective of computa-
tional weld mechanics.

The results of such an analysis are shown in
Fig. 1 to 5. It has been assumed that the weld

Fig. 1 Finite-element mesh for a weld described in a

Eulerian reference frame. Note that filler metal
is added. The weld pool, which is not shown, is not
needed in this analysis because the temperature is
prescribed at the weld-pool boundary. The mesh is finest
just in front of the weld pool.
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Fig. 2 Temperature contours of a weld in low-carbon steel. (a) For whole mesh. (b) For the region around the weld pool

pool is characterized by known data. The weld
pool behavior has not been predicted. In order
to predict weld pool behavior, most researchers
would assume that the distribution of thermal
flux, the current density, and the velocity and
pressure in the arc are known data. With these
data, they would solve the conservation of
mass, momentum, and energy to compute the
temperature, velocity, and pressure fields in
the weld pool and the position of the weld-pool
liquid-solid and liquid-plasma interfaces.

The proceedings of recent conferences in
computational weld mechanics are now embod-
ied in the literature (Ref 1-4).

Geometry of Weld Models

Most computational models have ana-
lyzed bead-on-plate welds, because of their

simple geometry. In addition to bead-on-
plate welds, this discussion considers V-groove
welds, girth welds, and branch welds on
pipes (Fig. 1-9). The geometry specifies
the region of space that is to be analyzed.
This region is called the domain, €, and
its boundary is denoted 0Q. To analyze
the weld, the geometry will usually be repre-
sented by a finite-element mesh. Because
temperature, stress, and strain change rapidly
near the weld, it is useful to use a fine
mesh near the weld for resolution and accuracy.
However, a coarse mesh is preferred at a site
far from the weld, in order to reduce comp-
utational costs without unduly sacrificing
accuracy or resolution. For this reason, it
is desirable to have the ability to grade the
mesh or to adaptively refine and coarsen
a finite-element mesh for analyzing welds
(Ref 5).

Energy Equation and Heat Transfer

The conservation of energy is the fundamen-
tal principle that underlies all thermal analysis,
including that of welds. In the simplest terms,
it states that while energy can be added or
extracted, no energy can be created or
destroyed in the domain being analyzed. The
essential material behavior for heat conduction
is that a flux of energy, ¢ (J/m” - s), flows from
hot regions to cold regions under the influence
of a temperature gradient, VT, and the thermal
conductivity of the material, x:
g=—xVT (Eq 1)

The energy required to change the temp-
erature of a material is defined by another mate-
rial property, the specific heat, Cp, or enthalpy,
H, of a material. The enthalpy is defined with
respect to a reference temperature, Ty.r, as:

H(T) :/TT C,dT

ef

(Eq 2)

In terms of the enthalpy, thermal flux, and a

distributed heat-source term, S (J/m> - s), the
energy equation in differential form is:
H-V-g—5=0 (Eq 3)
or, in terms of temperature, it is:

pC,T — V- (—kVT) =S =0 (Eq 4)

This is a parabolic partial differential equa-
tion. The essential parts of any such equation
are the boundary conditions, the initial condi-
tions, and the parameters such as specific heat,
Cp, thermal conductivity, k, and heat source
per unit volume, S. The boundary conditions
can be either essential (prescribed temperature)
or natural (prescribed thermal fluxes) for all
time. The part of the boundary on which essen-
tial boundary conditions are prescribed is called
0Qp, whereas the part of the boundary on
which natural boundary conditions are pre-
scribed is called 0Qy. These two parts must
make up the entire boundary, and they must
not overlap at any point, that is, at no point
can both be essential and natural. In mathemat-
ical terms, this is expressed as 0Q = 0Qp U
0Qy and 9Qp N 9Qy = O. The essential bound-
ary condition is:

T(x,t) = Fp(x,t), x € 0Qp,t >0 (Eq 5)
and the natural boundary condition is:
q(x,t) = Fx(x,1), x € 0Qn,1> 0 (Eq 6)

The initial conditions describe the dis-
tribution of temperature or enthalpy at all
points in the interior of the domain, Q, at time
zero:

T(x,1) = Finie(x), x € Q,t =10 (Eq7)
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F|g. 3 Temperature contours of a weld in aluminum alloy. (a) For whole mesh. (b) For the region around the weld
pool. Because the thermal diffusivity of aluminum is higher than steel, the mesh can be coarser, particularly
in front of the weld pool.
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F|g- 4 Distortion (magnified by a factor of 2) of a steel
plate

If the latent heat of phase transformations is
to be considered, then the initial distribution
of the density of each phase, p;, is also needed:
pi(x,0) =p;, (x), x€Qt=0 (Eq 8)
The known functions, that is, data, are Fp, Fy,
Finit, and. Pipc

To include the effect of phase transforma-
tions, such as liquid to solid and the decompo-
in low-alloy steels, it
would be necessary to have equations describ-
ing the evolution of each phase. However,
this has not been included in this energy equa-
tion. The latent heat of solid-state transforma-
tions, such as austenite to ferrite in steel, has
a detectable effect on the temperature field,
but it is not large. To date, this effect has not
played an important role in the thermal analysis
of welds.

Solving the Energy Equation. The energy
equation defined previously can now be
solved for a specific welding situation. Finite-
element methods (FEMs) have been the
method of choice for stress analysis. Finite-
difference methods (FDMs) have been the
method of choice for fluid flow. Whether the
FDM or FEM method is best is an old argu-
ment. In rough terms, FEM has been used more
frequently for complex geometries and for
stress analysis, whereas FDM has been used

more frequently for fluid-flow analysis. How-
ever, FDM can be used for complex geometries
that use body-fitted coordinates. Some have
argued that FDMs are computationally more
efficient than FEMs. The computational effi-
ciency depends on the implementation. There
is no fundamental reason why one method
should have a computational advantage. The
FEM is used here because of its familiarity
and because it is better established for stress
analysis.

The FDM directly discretizes the partial
differential equation by approximating deriva-
tives with finite-difference expressions. The
FEM transforms the partial differential equation
to an integral form and then approximates the
integrals. A Green’s identity is usually used to
reduce the degree of the highest derivative from
order two to order one. In addition, it introduces
the natural boundary conditions in a natural and
elegant manner. The resulting integrals are
approximated by a finite set of basis functions,
usually piecewise polynomials. The piecewise
polynomials can be interpreted as being defined
by choosing a mesh of elements and nodes.
Within each element, a polynomial is chosen
for each node. Usually, it has a value of 1 for
its node and a value of O at all other nodes in
the element.

These basis functions can be used to interpo-
late the temperature field by using the value
of the temperature at each node. For example,
if the (x,y) nodal coordinates of a triangle
are (1,0), (0,1), (0,0), and the basis functions
for a triangle are chosen to be @(x,y) = x;
®o(x,y) = y; and @3(x,y) = 1 — x — y, then the
temperature at any point (x,y) in the element
can be expressed as:

T(x,y) = 01 (6, )T1 + @2(x,9)T2 + @3(x, y)T3

3
=Y ey (Eq 9)
i=1

where T; is the temperature at node i. Note
that if distorted triangles are used, then under-
standing the mathematics becomes more com-
plex, because the polynomial basis functions
are distorted into rational functions. If the dis-
tortion is excessive, then the basis functions
can become singular. However, distorted ele-
ments do not make FEM programs more diffi-
cult to use, as long as the distortion is not
excessive.

To solve the energy equation defined
previously, FEM can be interpreted as mini-
mizing a potential, solving a variational prob-
lem, projecting an exact solution from
an infinite dimensional space onto a finite
dimensional space, or finding the best ap-
proximation to the exact solution in the
finite dimensional space in some least-squares
sense. All of these interpretations lead to
the same set of ordinary differential eq-
uations, which can then be converted to the
same set of algebraic equations in order to
solve:
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Fig. 5 (a) Distortion of weld shown in a cross section. Note the rigid body motion of the region far away from the weld nugget. (b) Contours of the longitudinal residual-stress
component, G_. Note that the maximum stress is not located at the surface. (c) Contours of fraction of bainite at end of weld; maximum fraction of bainite is just under
0.3. (d) Contours of prior-austenite grain size at the end of weld

(CP%JF GK)AT =S' —KT!

~N(U)H" = Kt AT = besy (Eq 10)

where C, is the specific heat per unit volume, G
is the gram matrix, 0 is the length of the time
step, 0 is a parameter that determines the
time-integration method, AT = T3 — T' is the
increment in the temperature in this time step,
S' is the nodal load vector that is due to exter-
nal thermal loads, 1\7(U)H1 is the nodal load
vector that is due to advection evaluated at the
beginning of the time step, K¢ is the effective
stiffness matrix, and b is the effective load
vector.

For a detailed presentation of FEM
theory, refer to any textbook on the subject,
such as Ref 6 to 8. Space constraints here
do not allow a more detailed explanation.

Because commercially competitive FEM pro-
grams typically require hundreds of man-
years to write, as well as special expertise,
it is assumed that most readers will choose
not to write an FEM program, but will use
an FEM program written by others. When
choosing an FEM program, four main issues
should be considered: functionality, computa-
tional efficiency, ease of use, and ease
of learning. Because most of the costs of analy-
sis are in preparing data and training, the
latter two issues are nearly as important as
functionality.

Convection, Radiation Boundary Condi-
tions, and Contact Conductance. Given
a body at temperature 7 immersed in a
fluid at temperature T, convection assumes
that a thermal boundary layer exists with con-
ductance, h (J/m2 -8 °C), such that the

temperature difference across the boundary
layer causes a flux, ¢ (J/m? - s), given by:

qcon — h(T - Tamb) (Eq 11)

If the fluid is flowing with velocity, v, and pres-
sure, p, over a plate with a Prandtl number, Pr,
and a Reynolds number, Re, then the convec-
tion coefficient can be estimated to be:
h=0332 % Re!/3pr!/3 (Eq 12)
Given a body at temperature 7T radiating to a
body at temperature T, radiation assumes
an emissivity and Stefan-Boltzmann constant,
c (J/m2 -8 - K4), such that the temperature dif-
ference causes a flux, ¢ (J/m? - s), given by:

dra = €0 (T =T (Eq 13)
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CONTOURS OF TEMPERATURE
Time = 23.8 sec.

F|g. 6 Temperature isotherms near the weld pool in Barlow’s weld. Note that contour “I” has two pools: one under
the arc and one in the region behind the arc. This heat source was modeled as a prescribed-temperature

region.

Fig. 7 Distortion of a bar being welded. Note the change of curvature. Near the weld pool, the center of curvature is
below the bar. Far behind the weld pool, the center of curvature is above the bar.

This is usually linearized as:

Grad = QU(TZ + Tazmb) (T + Tamb)(T - Tamb)

= hr:\d (T - Tamb) (Eq 14)

Then, the effects of radiation and convection
can be combined into a single effect if the

ambient temperatures are equal. Of course, the
ambient temperature for convection and radia-
tion need not be equal.

In an FEM program, this boundary condition
is applied by specifying the values of the
convection coefficient and the ambient temper-
ature at the nodes on this part of the boundary.

The program computes a contribution to the
nodal thermal load and the stiffness matrix.

Modeling the Heat Source in a Weld.
Rosenthal (Ref 9) and Rykalin (Ref 10) mod-
eled the heating effect of the arc traveling on
a thick plate as a point source; that is, they
assumed that all the energy is input into a point.
In an FEM model, this could be approximated
by specifying a thermal load at a node shared
by very small elements.

It is worth exploring the difference between
the FEM approximation and the Rosenthal solu-
tion for the point source. The most notable dif-
ference is that the temperature at the point
source is infinite in the Rosenthal solution,
whereas it is finite in the FEM approximation.
The explanation is that in the Rosenthal solu-
tion, a finite amount of energy is being put into
zero volume at the point. This causes an infinite
temperature. In the FEM approximation, a finite
amount of energy is being put into the elements
containing the node, which is the point source.
Because these elements have a finite volume,
the temperature is finite.

If the temperature is plotted near the point
source, the Rosenthal solution varies exponen-
tially with position. The FEM solution has a
polynomial dependence on position that comes
from the polynomial basis functions. If the
finite-element mesh size goes to zero, then the
FEM approximation to the Rosenthal solution
becomes more accurate.

Rosenthal and Rykalin chose a point source,
not because they believed the arc was of zero
size, but because it enabled them to solve the
energy equation. Their solution was a useful
approximation at points that were sufficiently
accurate far from the arc. With the FEM, there
is no advantage in choosing a point source. It
is preferable to use a more-accurate approxima-
tion to the energy distribution in the arc.

Pavelic et al. (Ref 11) used a truncated
Gaussian distribution of a prescribed flux in a
circular disk moving with the arc over the
weld joint. This can be accurate as long as
the arc does not suppress the weld-pool
surface too much and convection effects in the
weld pool are not too large. If the arc-pool sur-
face depression is large and/or if the velocity
in the weld pool is large, then it can be more
accurate to model the heat input, not as a
distributed flux but as a distributed power den-
sity heat source that defines the heat input per
unit volume per unit time at each point in the
weld-pool region.

Goldak et al. (Ref 12) proposed a truncated
Gaussian distributed heat source in a double-
ellipsoid region. More-complex weld-pool
shapes can be approximated by superimposing
distributed heat sources.

Various phenomena can be introduced into
these heat-source models, such as radiation,
evaporation, and latent heat of fusion. How-
ever, it is useful to perform the following
thought experiment to clarify their role.
Assume that the exact temperature field is
known as a function of time. Now, prescribe
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Fig. 9 Cutaway views of a branch pipe or T-joint weld. Top figure uses only eight node bricks. Note that the
temperature gradient through the thickness of the pipe is negligible, except near the weld pool. The mesh

in the bottom figure uses thermal shell elements and is both more accurate and more efficient.
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that temperature field in the FEM equation. The
reaction at each node is the nodal thermal load,
which includes the net effect of all such phe-
nomena. This can be for any shape of weld
pool. Therefore, these phenomena can be
included implicitly in the distributed heat
source model, if desired, or they can be treated
separately. If they are treated separately, then
the definition and value of the distributed heat
source should be changed accordingly.

Prescribed-Temperature Heat Source. If
an estimate of the temperature in the weld
pool is available, then it is often more conve-
nient to model the heat source by prescribing
the temperature in the weld-pool region (Ref
13). For example, the temperature on the
surface of the weld pool and a cross section
of the weld nugget could be measured. The
liquid-solid interface could be assumed to
be at or slightly below the solidus temperature.
Then, nodes in the weld-pool region could
have their temperatures prescribed. The reac-
tions at these nodes would be the prescribed
nodal thermal load that produces the same
temperature distribution. Thus, the prescribed-
temperature heat-source model and the pre-
scribed distributed thermal load heat source
are equivalent in the sense that either can be
used to produce the same temperature solution.
The experience of the authors has shown that
estimating the prescribed-temperature distribu-
tion is much easier than estimating the
distributed heat source, particularly for com-
plex weld-pool shapes. For example, the
authors were not able to estimate a distributed
power density source that could model the weld
shown in Fig. 6, whereas modeling this weld
with a prescribed-temperature source was not
difficult.

Material versus Spatial Reference Frames.
Although Rosenthal used a spatial reference
frame, most FEM analyses of welds have used
a material reference frame. A spatial frame is
fixed in space, and any space can be chosen.
Rosenthal chose a space that was tied to the
arc. It may be easiest to visualize this as an
arc that is fixed in space, where the plate being
welded moves under the arc through the spatial
mesh. It is equally valid to imagine the plate
fixed in one space and the arc fixed in a second
space. In this case, Rosenthal used the second
space.

A material reference frame defines the
configuration of the body either at some
point in time (usually, time zero) or at the
beginning of each time step. The displace-
ment field defines the mapping from the refer-
ence configuration to the configuration of
the body at any other time. Imagine that
each node in a finite-element mesh is associated
with a material point. The node and its asso-
ciated material point move through space as
a function of time. This defines a material refer-
ence frame.

Most FEM analyses of welds have used a
material reference frame, also called a Lagrang-
ian reference frame, in which the heat source
moves as a function of time. However, because
the FEM is discretized in time, the usual FEM
analysis is equivalent to a series of spot welds.
If the time steps are sufficiently small so that



the distance the heat source moves in one time
step is sufficiently small, such as half its diam-
eter, then the effect of this discretization need
not be excessive. If the time step is so large that
the heat source moves more than, say, three
times its diameter, for example, then the differ-
ence between the computed and measured tem-
perature field will be large.

The use of a spatial frame, which is
often called a Eulerian frame, avoids this
problem. However, it introduces an advective
term into the FEM equation. This term is
nonlinear, and the usual formulation leads
to an asymmetric set of equations to solve.
Recently, Gu (Ref 14) implemented the Euler-
ian formulation and demonstrated its advan-
tages (Fig. 1-5). The spatial frame enables
longer time steps to be taken as the weld
approaches steady state.

Transient versus Steady State. In a spatial
frame that is tied to the heat source, the temper-
ature near the arc of a long weld parallel to the
prismatic axis of a prismatic body soon reaches
a steady state. Indeed, the Rosenthal solution is
an example of such a steady state. The weld
pool typically reaches steady state in one to
three weld-pool lengths. A rough guide is that
any isotherm will approach the steady state in
one to three isotherm lengths. Thus, lower tem-
peratures require longer times and longer
lengths to reach steady state. In analyzing long
prismatic welds, computational efficiency can
be gained by analyzing the steady state.
Leblond et al. (Ref 15) and Gu (Ref 14) provide
details, and the results of a steady-state analysis
are shown in Fig. 1 to 5.

Modeling the Addition of Filler Metal.
Bead-on-plate welds can have the simplest
geometry and meshes, and they can exploit
symmetry to reduce computing costs. When
joint details are included, the mesh is somewhat
more difficult to create. If welds are not on the
symmetry plane, then symmetry cannot be
exploited and the computational cost increases.
These difficulties are minor, when compared
with the difficulties of modeling the addition
of filler metal. The first models used a material
reference frame, created a mesh, and then
turned on or activated those elements to which
filler metal was added as they filled (Ref 14,
16). When it is applicable, a spatial frame
offers a more-elegant approach, because the
weld pool can be fixed or varied slowly, as
desired (Ref 14) (Fig. 6). Figures 2 and 3 show
the transient temperature field in a groove weld
with added filler metal.

Microstructure Evolution

Microstructure strongly affects the material
behavior and hence constitutive parameters,
such as thermal conductivity, specific heat,
and Young’s modulus. Volume changes asso-
ciated with phase changes, such as austenite to
ferrite, can cause large strains. For these
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reasons, microstructure can have a dominant
effect in the stress analysis of a weld.

This discussion is limited to welds in low-
alloy steels. The phase, or equilibrium, diagram
identifies the phases that are present, their com-
position, and the fraction of each phase present
in a steel as a function of alloy composition,
temperature, and pressure. Because as many as
10 alloying elements can be significant in low-
alloy steel, the phase diagram could be in a
space of 11 dimensions. To make this more
tractable, this discussion uses pseudobinary
iron-carbon diagrams. As functions of composi-
tion, the Aes (austenite to austenite-ferrite line)
and Ae, (eutectoid) temperatures are of particu-
lar interest when analyzing the decomposition
of austenite.

At each temperature, the system tends to
equilibrium. Phases that are unstable tend to
transform to stable phases. Although the direc-
tion is largely controlled by thermodynamics,
the rate is largely governed by kinetics. Follow-
ing Kirkaldy (Ref 17), it is assumed that the
decomposition of austenite into ferrite, pearlite,
and bainite can be described by ordinary differ-
ential equations of the form:

I pGna gy

Eq 15
T (Eq 15)

where (1 — f) is the fraction of austenite; fis the
fraction of the transformation product, for
example, ferrite; the function B(G,T) reflects
the influence of grain size, undercooling, the
alloy and temperature dependence of the solute
diffusivity, and the phase fractions that are
present; and m and p are parameters of the alloy
system. This is essentially the model that was
developed by Henwood et al. (Fig. 10). It was
used to compute the microstructures in the
heat-affected zone (HAZ) of the problems ana-
lyzed in Ref 19. Vandermeer (Ref 20) has pro-
posed a modification to include the effect of
carbon accumulation in the austenite during
the transformation.

Austenite grain growth in the HAZ is com-
puted from the ordinary differential equation:
% = %ke’gﬂ“ (Eq 16)
where G is the austenite grain size, k is a
parameter, Q is the activation energy, R is the

v
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Fig 10 (@) Schematic cross section of a bead-on-plate weld, identifying a point in the heat-affected zone (HAZ). (b)

Iron-carbon phase diagram, identifying the cooling path and critical temperatures. (c) Thermal cycle,

identifying the regions that must be considered when implementing the microstructure algorithm. Source: Ref 18
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universal gas constant, and T is the absolute
temperature. The grain size of austenite has a
dominant effect on the hardenability of steel
and hence the decomposition of austenite. The
authors suspect that errors in the predicted aus-
tenite grain size are a significant cause of errors
in the evolution of microstructure in the HAZ.
In particular, this grain size is the average grain
size. The equation was developed for grain
growth in annealing essentially homogeneous
regions. In a heterogeneous HAZ with steep
temperature gradients across single grains, it
is not clear that this equation is appropriate
(Ref 21).

The aforementioned microstructure models,
with the exception of that proposed by Van-
dermeer, do not consider the composition of
each phase or the composition changes that
are due to solute diffusion between phases.
They only consider the composition of the sys-
tem. Phase fractions are density functions that
specify the mass fraction of a phase per unit
volume. Grain size is also a density function.
Thus, there is no representation of the micro-
structure and no capability to draw the micro-
structure being analyzed.

Thermal Stress Analysis of Welds

Stress analysis deals with the equilibrium
of forces, the kinematics of deformation,
and the relationship between deformation and
force. The existence of a stress tensor field,
a strain tensor field, a displacement vector
field, and a constitutive relationship between
stress and strain are assumed. The conservation
of momentum is the fundamental conservation
law.

From another viewpoint, the equilibrium of
forces is expressed by the conservation of
momentum and the definition of the stress ten-
sor, o, the traction vector, T, and the body
force, b, in the differential equation:
V-.-c+b=mi (Eq 17)
In welding, it is typical to assume that the iner-
tial forces are negligible, that is, mX ~ 0. This
implies that the rate of change of loads is small,
relative to the time required for a stress wave to
propagate across the domain and for a stress
wave to decay.

The solvability equations require the inte-
grals of the external forces, that is, the traction
vector, T, and the body force, b, to be in equilib-
rium with themselves:

/bdQ+/ 7dQ =0
o )

Whether or not
rigid, the
equilibrium.
The kinematics or deformation is described by
the displacement and strain fields. For a total dis-
placement field, [u,v,w]T = [u(x,y,z,t), v(x,y,z,t),

(Eq 18)

the deformed body is
external forces must be in

w(x,y,z,t)]T, at the point (x,y,zf), the Green’s
strain is defined as:

. Vu+ Vu' +Vu'Vu

3 (Eq 19)

where Vu is the deformation gradient:
(Eq 20)

The Green’s strain is a symmetric tensor. It
measures the change in distance between points
in the neighborhood of a point caused by the
deformation.

The material properties are described by the
constitutive, or stress-strain, relationship, ¢ =
Dg, where D is the fourth-order tensor that
maps the elastic strain tensor to the stress ten-
sor. Thermodynamic arguments require D to
be symmetric positive definite. For isotropic
elastic materials, D is defined by two constants,
such as Young’s modulus and Poisson’s ratio.

Most FEM analyses of welds have used an
additive decomposition of the total strain rate
into elastic, thermal, plastic, and transformation
plasticity strain rates:

éTol — éElas + éThelm + éPlas + éTransPlas

(Eq 21)
Plasticity theory and numerical algorithms
based on the multiplicative decomposition of
the deformation gradient F = F°F? were devel-
oped in the period 1985 to 1994 (Ref 22). This
theory is better suited to finite strain analyses.
Although the creep strain rate could be
included, the authors are not aware of published
studies of creep in the modeling of welds, to
date.

Equation 18 is an elliptic partial differential
equation. Boundary conditions are an essential
part of any such equation, and they can be
either essential (prescribed displacement) or
natural (prescribed traction). They must be pre-
scribed for all time. The part of the boundary on
which essential boundary conditions are pre-
scribed is called 0Qp, whereas the part of the
boundary on which natural boundary conditions
are prescribed is called 0Qy. These two parts
must make up the entire boundary, and they
must not overlap at any point. In mathematical
terms, this is expressed as 0Q = 0Qp U 0Qy
and 0Qp N 0Qy = 0. The essential boundary
condition is:

u(x,r) = Fp(x, 1), x € 0Qp,t >0 (Eq 22)
The natural boundary condition is:
T(x,t) = Fx(x, 1), x € 0Qn,1>0 (Eq 23)

Although an elliptic boundary value problem
does not have initial conditions, initial data
describing the distribution of the displacement,
strain, or stress can be specified at all points
in the interior of the domain, Q, at time zero:

6(1,1) = Fouu(x), € Q1 =0
€()C, t) = Feinil(x)a X e Qaf =0
M(X, I) = Fuinil(x)1 X € er =0

(Eq 24)

If microstructure evolution is considered,
then only the macroscopic (average) stress,
strain, and displacement fields will be consid-
ered. In other words, the variations in the fields,
below some length scale, are averaged or
ignored. This is inherent in a finite-element
mesh, because an FEM analysis cannot detect
spatial frequencies higher than those captured
by the polynomials in the mesh.

Given the transient temperature-rate field in a
weld, the thermal volumetric strain rate is:

éTherm =T
~Therm Therm __
dté ~ Ae = aAT (Eq 25)
dot

&ZOL‘FE(T*Tmf)

The coefficient of thermal expansion, o, is a
property of the material.

If the stress, body force, traction, strain, and
displacement fields are sufficiently smooth,
then this is a well-posed problem and the math-
ematics is well understood. The aforementioned
continuum mechanics problem can be solved by
an FEM approximation. In particular, the total
strain rate is approximated by:
€T = By (Eq 26)
where # is the nodal displacement rate or veloc-
ity, and B is the discrete symmetric gradient
operator.

Examples of stress analysis of welds are
shown in Fig. 7 and 8. For a general reference
on continuum mechanics and stress analysis,
refer to Ref 23 and 24.

Transformation Plasticity. Although the
transformation of austenite to ferrite, pearlite,
bainite, and martensite causes only a small
effect on the temperature field, it can have a
major effect on the stress field. This arises
through the phenomenon of transformation
plasticity (Ref 25, 26). The rate of transforma-
tion of austenite, Z; the deviatoric stress, T,
and constant, K, that includes the volume
change associated with the phase change; and
the yield strength all determine a contribution
to the strain rate and strain increment, given by:

17

éTransPlas — KT,’]’Z Ae[_jTransPlas — / KTUZdi (Eq 27)

u
tl

This effect is greatest in high-strength steels
such as HY-80 because the decomposition of
austenite occurs at lower temperatures, where
the volume change associated with the phase
change is largest (Fig. 11). In addition, plastic
deformation that occurs after the phase transfor-
mation is complete tends to hide or blur the
effects of transformation plasticity. When the
transformation occurs closer to room tempera-
ture, the effects of transformation are blurred
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Fig. 11

(a) Experimental data published by Corrigan (Ref 27) for the residual stress in an HY-130/150 weld.
(b) Predicted values of residual stress, published by Hibbitt and Marcal (Ref 28), who ignored the

austenite-to-martensite transformation in their finite-element method (FEM) analysis of the residual stress. (c) Predicted
values of longitudinal residual stress, as predicted by FEM analysis of Oddy (Ref 26), who has taken into account the
effects of the phase transformation and transformation plasticity. Clearly, the effects of the phase transformation

dominate the stress analysis in this case.

the least. In lower-strength steels and higher
weld heat inputs, the transformation of austen-
ite tends to occur nearer the eutectoid tempera-
ture, and the effect on the final residual-stress
state is less pronounced.

Because the transformation plastic strain rate
strongly affects the deviatoric stress, and
because the deviatoric stress strongly affects
the transformation plastic strain rate, the inte-
gration of Eq 27 requires some care in order
to avoid instability. Details are provided in
(Ref 26).

Stress Analysis near the Weld Pool. At
temperatures below 800 to 1200 °C (1470 to
2190 °F) in steel welds, it has often been
assumed that the viscous strain, or creep, rate
can be neglected in welds, because the time at
high temperatures is relatively short. If this
assumption is accepted, then the material can
be modeled as a thermoelastoplastic material.
The theory for this is rather well accepted.
Above some temperature, it is expected that
the viscous strain, or creep, rate will become
important, possibly becoming the dominant

deformation mechanism, in which case the
material would behave as a viscoelastoplastic
material. The theory for this behavior is not
well established.

When a solid melts, the material changes
from elastic behavior to a viscous fluid. This
change is reflected in the Deborah number. It
has been argued that even at the melting point,
the crystal maintains a yield strength of the
order of 5 MPa (0.7 ksi). When it melts, the
yield stress drops to zero. Matsunawa (Ref 29)
estimated that the viscosity of a liquid increases
by a factor of 2 x 10" upon solidification. The
essence of elastic behavior is the existence of a
reference state with zero stress. In a crystal, this
reference state is crystal lattice. A liquid has no
such reference state. Thus, there is a profound
change in the physical behavior and the rele-
vant mathematics upon melting. To deal with
the change, the liquid and solid regions are typ-
ically considered as separate problems. On the
interface, the temperature and the traction are
continuous.

Because the authors do not know of any care-
ful stress analysis in this temperature range for
welds, this problem is left open.

Stress Analysis of Welds in Thin-Walled
Structures. The use of plate and shell FEM ele-
ments can reduce cost and improve numerical
accuracy significantly (Ref 30, 31). These
elements usually assume that those stress com-
ponents that project onto the normal-to-the-
midsurface plane are zero, that is, s.., .,
and sy, are O if the z-axis is normal to the
midsurface. In heat-transfer analysis, the pro-
jection of the temperature gradient onto the
midsurface normal plane is assumed to be O,
that is, 0T/0z = 0. This is usually an excellent
approximation, except near the intersection of
surfaces, such as a pipe T-joint. It can be a good
approximation of near-deep-penetration elec-
tron-beam and laser-beam welds but is usually
not accurate near arc weld pools. Figure 9
shows an example of a weld that would not be
accurately approximated by shell elements near
the weld pool. Except in such regions, shell and
plate elements can be effective. Combining
shell and brick elements often provides the best
approximation.

Fluid Flow in the Weld Pool

Thus far, weld pool data, that is, an adequate
approximation of size, shape, and position,
have been known as functions of time. Either
the weld pool temperature or the power density
and thermal flux distribution also have been
known as functions of time. To predict weld
penetration, solidification mode and microstruc-
ture, and other phenomena that are sensitive to
the weld-pool physics, such as hot cracking
and the stress and strain near the weld pool,
it is necessary to model the weld pool. The
model should predict the temperature, pressure,
and velocity distribution in the weld pool,
as well as the position of the liquid-solid and
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liquid-plasma boundaries. It is also desirable to
predict the current density, velocity, and pres-
sure fields in the arc. Matsunawa (Ref 29) pre-
sents an excellent review of weld-pool
analyses.

The major forces that drive convection in the
weld pool are electromagnetic, gravitational or
buoyancy, surface tension, and aerodynamic
drag. The electromagnetic and gravitational
forces act on the interior of the weld pool,
whereas the surface tension and aerodynamic
drag forces act on the surface, producing a trac-
tion force.

The conservation of mass, or continuity,
equation for an incompressible liquid in the
weld pool is:
V-v=0 (Eq 28)
The conservation of momentum in the interior
of the weld pool in spatial coordinates is:

pv+pv-Vv+Vp+ V- -uVv+JIxB+f (Eq29)

where p is the density, and p is the pressure.
The boundary conditions on the weld pool and
arc interface are the traction that is due to the
gradient in the surface tension, -[(0Y)/(OT)]V,T,
and the traction, Tp, that is due to drag from the
velocity of the plasma:

G»nzfué»nzf?—yVSTJer (Eq 30)
or
where n is the direction normal to the weld pool
and arc interface, and the gradients are gradi-
ents in the surface. On the interface between
the weld pool and solid, the velocity is zero,
and the traction vector is continuous. The pres-
sure must be specified at one point in the weld
pool. When dealing with an incompressible
fluid, it is important to remember that the pres-
sure is not a thermodynamic variable but a con-
straint to enforce incompressibility.
The conservation of energy in the interior of
the weld pool in spatial coordinates is:

OH

pE-&-p\wVH:V«Vv-&-f

(Eq 31)
The velocity in the energy equation is deter-
mined from the momentum and continuity
equation. The thermal flux from the arc is pre-
scribed on the weld pool and arc interface. With
these data, the energy equation determines the
position of the liquid-solid interface. With a
new temperature distribution, the momentum
equation is solved. If this iteration procedure
converges, then the result is said to be a
solution.

The mathematical nature of the aforemen-
tioned equations that model the weld pool and
their numerical solution is significantly more
difficult than those needed to model the behav-
ior of welds below, say, 0.7 of the melting tem-
perature. The physics is also more difficult.
Most analyses of the weld pool have used either
finite-difference or finite-volume methods.

They have achieved interesting results and have
done much to clarify the physics of the weld
pool. However, in Matsunawa’s view (Ref
29), the capability to accurately predict weld-
pool shape and size is still limited. See Ref 30
and the references therein for more recent
research on weld-pool modeling. Continued
progress in weld-pool modeling is needed and
can be expected.
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