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ABSTRACT 
When fabrication deals with multiple welds, an optimal weld 

sequence design can well manage the undesired damaging 

effects such as the distortion and residual stress during welding. 

However, the process of finding an effective weld sequence is a 

challenging task given a large number of possible combinations, 

i.e. several thousands of welding scenarios. On the other hand, 

most of the standards require the development of a control plan 

for mitigation of those undesired effects. Typically, plans to 

control the damaging effect are, therefore, mostly intuitive with 

welding engineers relying on previous experience combined with 

the results of a limited number of practical tests. Welding 

simulation tools allow engineers to optimize welding scenarios 

on a digital twin without the need for multiple physical samples. 

However, the analysis-time practically limits exploring a large 

number of possible combinations for a weld sequence design. 

The use of machine learning (ML) algorithms for simulation and 

artificial neural network (ANN) can be an alternative for fast 

exploration of various weld sequence scenarios. As opposed to 

existing ANN and ML algorithms that require an extensive data 

set to be up to mimic a behaviour, we developed a hybrid-digital 

twin platform that wisely picks small data set consist of 

simulation results to construct a meta-model for fast exploration 

of welding scenarios. The performance and capability of our 

platform are shown through an example of a complex welded 

structure with billions of possible welding scenarios to explore. 

 

1. INTRODUCTION 
In the age of fast-growing smart technologies and devices, the 

art of thinking out of the box to deliver creative solutions for your 
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needs will be the last to replace by technology, perhaps not likely. 

Welding engineering, similar to many other fields, will 

ultimately be dominated by smart systems for delivering a 

welding engineering that has historically relied on the 

recommendation of standards or any past experience of the 

welding team, including welders, supervisors and engineers. 

Becoming innovative beyond the standard and hands-on use of 

smart tools will be an essential skill for our welding engineers to 

fit the future of the industry. 

On the other hand, the structural complexity is continuously 

increasing with tightening tolerances on fabrication; as such, our 

welding engineers routinely face challenges that are not directly 

addressed by standards nor by previous experience. A good 

example is when a welding engineer is asked for developing a 

distortion control plan, which is part of the contractorôs 

responsibility, by standard regulation. Codes such as CSA W59 

or AWS D1.1 has all requirements for distortion control plan, but 

no solutions are presented on how to achieve them. In general, 

conventional methods such as back-stepping, use of strong 

backs, pre-bending, and weld sequencing are all effective 

methods to reduce the distortion. However, unless they are 

tailored and specifically engineered for each joint, they are not 

likely to deliver optimal results. The problem arises when the 

tolerances for distortion cannot be met after a few trials; the way-

out is often to push back on the designer to relax expectations. 

The use of modeling and simulation is well established in many 

areas of engineering; however, welding is among the few fields 

where simulation is not commonly deployed to develop 

engineering solutions. Excellent simulation software is now 

available to capture and couple thermal, microstructure and 
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stress effects of welds based on 3D transient temperature and 

thermal stress-strain analysis [1]. Computer simulations are the 

best tools to help users' apply their creativity, expertise and skill 

to be more productive and innovative beyond the standard. 

Despite powerful supercomputers, yet welding simulation tools 

are limited by computational time and, therefore, not mature for 

practical designs. 

We initially [2] developed an industrial-scale framework for the 

designer-driven exploration of computational weld mechanics 

(CWM) design space that automates multiple setups and 

evaluations required to practically explore a design space by the 

given design of experiment (DOE) matrices. Saving an expert 

user's time to prepare several analyses and allocating CPUs to be 

utilized efficiently make this framework cost-effective and time-

effective to manage designer-driven optimization and control 

application of CWM. 

This framework enabled us to develop solutions for welding 

residual stress using Monte-Carlo method [3] and regression 

analysis [4], as well as, for distortion control using typical 

welding engineering techniques including optimal tack welding 

[5], pre-bending [6], and side heating [7]. Additionally, the 

framework helped us in the process of verification and validation 

when comparing CWM with experimental data [8].  

The framework faced a new challenge when dealing with the 

weld sequence design. Having ñnò welds requires choosing from 

ςὲȦ possible scenarios or combinations of the welds (ὲȦ for 
permutations and ς for change in the direction of welding), e.g., 
several million for typical weld consisting of 10 weld passes or 

more. Additionally, the weld sequence design space is a 

discontinuous space, where theories of interpolation or 

extrapolation between data are not valid for the exploration of 

such an ample design space. 

Our most straightforward algorithm for weld sequence design 

was based on joint rigidity, where the methodology can find the 

best sequence with a minimal number of welding simulations. 

The quickest joint rigidity method [9] uses ñnò simulations to 

find a sequence for minimal distortion where ñnò is the number 

of weld passes. A better sequence can be selected with the 

progressive joint rigidity method [10] that needs analysis. This 

explanatory space is significantly small sub-space of the total 

combinatorial possibility of welding ñnò passes when compares 

to ςὲȦ possible scenarios. The main limitation of the joint 

rigidity method was the progressive nature of the methodology 

that prevents it from parallel computing. Therefore CPU time can 

increase for a large number of weld passes. 

One affordable approach developed to use a fast but low-fidelity 

model that captures the most dominant physics of the problem.   

Although such an algorithm loses some accuracy, it provides a 

useful approximation of relative behavior for judgment between 

weld sequencing scenarios. In many design cases, a designer can 

decide based on this rough approximation of the behavior. A low-

fidelity model can be merely an analytical solution [11] or 

empirical correlation [12]. There are many investigations on 

distortion control based on relatively low-fidelity mathematical 

formulation [13], such as Design of Experiment (DOE) [14], 

Analysis of Variance (ANOVA) [15], Response Surface Method 

[16], or Taguchi Method [17]. The nature of low-fidelity models 

limits the performance within a case-specific design envelope 

because these models are good interpolators but poor 

extrapolators beyond the boundary of a given design envelope. 

As an alternative, we presented another methodology to 

construct a meta-model of distortion based on the surrogate 

algorithm [18] in combinatorial space. This algorithm is well 

suited for parallel computing and can find the best sequence by 

running ñ4nò independent simulations in parallel and within the 

time frame of a single simulation run.  

Better fidelity obtained by using Machine Learning (ML) 

algorithms where the machine can learn about the behavior of a 

system within multiple level non-linearity [19]. 

Among practical ML methods for welding sequence 

optimization, in this paper, we introduced another methodology 

that constructs a deep learning artificial neural network for data-

driven prediction. The resulting optimal sequence significantly 

reduced the final distortion, and we showed the result on a panel 

structure with eleven weld passes. A summary of this 

methodology is presented here. Experimental validation is not 

part of this paper; however, simple experimental tests were 

performed in the background for validation of distortion and 

thermal prediction. We also coupled our ML algorithm with the 

search algorithm to explore the sequence design space. The 

resulting optimal sequence seems to significantly reduce the 

final distortion with a wise selection of cross-over and mutation 

between sequences to reach the optimal point at a lower 

computational cost. 

 

2. PANEL STRUCTURE 
Panel fabrication is part of many engineering structures, and 

welding is the sole fabrication method to erect such structures. 

In this paper, a panel, without the loss of generality, is selected 

to present our methodology and find the best welding sequence 

pattern for minimal distortion on the panel plate. Figure  

illustrates the panel structure with 11 weld passes that connect a 

658x360x19 mm panel plate to 11 stiffeners with varied 

dimensions and thickness from 42 to 50 mm as shown in this 

figure.  There is no symmetry in the configuration of stiffeners, 

and the stiffeners are tack-welded on both ends before welding 

starts. An optimal clamping pattern was designed as a separate 

task where CWM was used to evaluate several clamping 

scenarios and to iterate toward the optimal clamping shown. The 

detail for the optimization of the clamping pattern is not in the 

scope of this paper. The panel material is Aluminum 6061 T6, 

and temperature dependent material properties were used in the 

analysis. 

By convention, Figure 1 shows the name designation for each 

weld pass, and changing capital letters to little letters means 

changing in the direction, as well, as the objective function that 

was characterizing the distortion using Eq. 1. Our task was to 

determine the welding sequence out of (A/a, B/b, C/c, D/d, E/e, 

F/f, G/g, H/h, I/i, J/j, K/k) welds. 

The objective is to find the best sequence that gives the lowest 

distortion. We chose to characterize this distortion by Eq.1 where 



3                                                                     © 2020 by ASME 

ñjò represents all FEA nodes in the panel par, and dx, dy, dz are 

deformation in the coordinate system. The first term captures the 

root mean square average of deflection on the plate and the 

second term is to capture the most substantial deflection on the 

plate. Therefore minimizing Eq.1 can co-minimize the average 

deflection and the most substantial deflection. 

 

 
Figure 1: Panel structure of interest for distortion control. 
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3. MATERIAL PROPERTIES 
Below are the properties that are taken from [20], [21] for this 

welding analysis: 

¶ Temperature-dependent Thermal Conductivity  

¶ Temperature-dependent Thermal Expansion 

¶ Temperature-dependent Heat Capacity 

¶ Temperature-dependent Modulus of Elasticity 

¶ Temperature-dependent Yield Stress 

¶ Temperature-dependent Density   

¶ Poisson's ratio 

  

Details of these properties are shown in Table 1. 

 

4. COMPUTATIONAL SETUP & ANALYSIS OF WELD 
A full 3D model of the panel was created using Abaqus Welding 

Interface (AWI) and in-house subroutines. The AWI uses the 

fusion line defined by the user and assigns a melting temperature.  

We used the Dirichlet temperature; however, AWI also offers a 

flux-based model based on Goldakôs Double Ellipsoid [1].  The 

user controlled the weld sequence through an in-house 

subroutine. This allowed for the automation of each weld pass in 

sequence. The welding time is automatically calculated from the 

pass length and the torch speed. Weld passes were deposited in 

five chunks to save CPU time while capturing the effect of 

welding direction. A series of cool down steps were added after 

the welding was finished. Figure 2 and Figure 3 show snapshots 

of welding thermal results. 

In this analysis, the initial temperature was 21 ÁC. A convection 

boundary condition generated a boundary flux on all external 

surfaces. The temperature-dependent convection coefficients 

(ύ ά  Јὅϳ ) is computed from Eq.2 [22] where T is the 

temperature in ÁC. 

 

▐╬ Ȣ
╣

Ȣ  ἢ                 Eq.2 

 

Table 1: Material properties for 6061 T6 aluminum alloy. 

Temperature (ÜC)  25 37.8 93.3 148.9 204.4 260 315.6 371.1 426.7 600 

Yield strength (MPa) 276 274.4 264.6 248.2 218.6 159.7 66.2 34.5 17.9 5 

Youngôs modulus (GPa) 68.9 68.54 66.19 63.09 59.16 53.99 47.48 40.34 40.34 0.1 

Thermal exp.(ɛ m/m K) 22 23.45 24.61 25.67 26.6 27.56 28.53 29.57 30.71 31.0 

Density (kg/m3) 2700 2685 2685 2667 2657 2657 2630 2620 2602 2589 

Thermal cond. (W/m K) 167 170 177 184 192 201 207 217 223 225 

Heat capacity (J/kg K) 896 920 978 1004 1028 1052 1078 1104 1133 1154 

Poisson ratio (-) 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 

Figure 1: FEA nodes used for the objective function Eq.1 (top), 

tag and direction convention for weld passes in the panel (bottom). 
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Figure 2: A snapshot of welding thermal analysis for the start of a 

pass. 

 
Figure 3: A snapshot of thermal analysis at the end of the pass. 

The stress analysis was quasi-static because inertial or dynamic 

forces are sufficiently small that they can be neglected.  

Therefore, at each instant of time, the domain is in static 

equilibrium. However, the temperature is time dependent and 

therefore the thermal strain due to thermal expansion is time-

dependent. The initial state was assumed to be stress-free. The 

boundary conditions were identical to the clamping defined and 

shown in Figure 1. The system is solved using a time marching 

scheme with time step lengths used for thermal analysis. The 

stress analysis followed immediately after the thermal analysis. 

Figure 4 shows the plate displacement after a given sequence.  

 

 
Figure 4: Plate displacement after completing a sequence. 

 

5. MACHINE-LEARNING AND DIGITAL-TWINS 
The state-of-the-art in weld modeling and simulation is the 

development of a computational replica of the structure called a 

digital twin of the component to be welded.  A machine-learning 

algorithm (ML) can then be used to train the digital twin, over 

time, from real observation and data assimilation (IoT). The 

result is a customized digital twin that accurately replicates a 

practice for distortion control and suggest options for continued 

welding. 

High-performance computing (HPC) enables engineers to 

perform data-driven engineering where a computer can act 

without being explicitly programmed. However, the current 

data-driven algorithm like machine learning takes a large initial 

data set to construct a model. In most engineering applications, 

there is no initial large data set to draw on. Therefore, big data 

mining tools cannot be a good solution for many engineering 

applications. 

As a solution, we developed a methodology to construct a digital 

twin from limited data as opposed to big data. Our digital twin 

uses a small set of data (by far less than a typical set of data 

mining) from computational simulations as its initial training set 

to form a minimal fidelity model. Then, wisely extend a useful 

training set to train ML toward higher fidelity properly. 

 

6. ARTIFICIAL NEURAL NETWORK (ANN) 
CONSTRUCTION 

The first step was the definition of a weld deposition pattern for 

the Artificial Neural Network (ANN). Three points on the weld 

pass defined each weld, i.e. start, middle and end. The ANN 

feature vector used the spatial distance of these characteristic 

points to two reference points (see Figure 5). Each sequence and 

direction generates a unique array of 66 elements. 

    

 

  
Figure 5: The spatial distance of the weld characteristic points to two 

reference points in the structure. 

The selection of reference points can significantly improve the 

rate of training; for example, we observed better training by 

choosing the location of fixtures as our references. We also tried 

different schemes for the definition of a weld deposition pattern 

for our ANN, such as binary and ASCII definition. Our weld 
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definition scheme needs a smaller training set because it contains 

a crucial physical feature that affects the final distortion. 

Generally, theory-guided machine learning (TGML) [23] 

improves the problem of using limited training data. We 

implemented TGML through an informed selection of the initial 

training dataset as well as the physics-guided feature vector. 

An informed initial training dataset was selected based on the 

distortion resemblance that can adequately represent the entire 

population of welding sequences. The main criteria of 

resemblance were the occurrence of each weld in every position 

and occurrence of each sequence pair in the pattern [19]. 

Further, a physics-based feature selection approach was used to 

include two physical aspects of a sequential welding process, 

including weld orientation and weld vicinity information. Weld 

orientation added 6 elements to the ANNôs feature vectors 

consists of the angle of welding deposition to a fixed axis. Weld 

vicinity added 10 elements to the ANNôs feature vectors consists 

of the center-to-center distance of weld passes in the sequence. 

We used a Dense Neural Network (DNN) and the prediction of 

DNN was the normal distortion (Y-displacement) for all FEA 

nodes on the base plate from the simulation mesh. 

Development and training of DNN took advantage of the high-

level API, Keras, running on top of Tensorflow library. The 

training dataset consists of 61 selective samples with the high 

likelihood of resemblance [19], and test-set includes 20 samples. 

Although the DNN requires the application of all 61 samples 

during training, the order of these samples in the input matrix is 

randomized to avoid bias. Feature space (x) is standardized (x ⅞) 

using the built-in function form Scikit Learn. Model training 

uses Rectified linear unit (ReLU) [24] activation function and an 

L2-regularized Adam optimizer [25]. A linear activation function 

was used for the output layer. The neural network trained by 

limited training data is prone to the noises, hence overfitting. 

Dropout method [26] is used to address this overfitting issue. The 

loss function was set to root-mean-square-error (RMSE). 

In addition to RMSE, correlation coefficient (r-value) and the 

slope of the regression line evaluate the developed modelôs 

predictability for each data point in the test set. Finally, model 

hyperparameters are selected using a Bayesian optimization [27] 

tool from SciKit Optimize library. These hyperparameters 

comprise; the number of hidden layers, number of neurons in a 

hidden layer, dropout rate, and regularization coefficient. 

 

7. SEARCH ALGORITHM 
As mentioned earlier, we chose to characterize the overall 

distortion by Eq.1. In a practical situation (like our main structure 

with 11 weld passes), the space of possible sequences is very 

large, and therefore it is not possible to fully explore all 

possibilities to select the best one. Using search algorithms such 

as genetic algorithm (GA) is necessary to be linked with the 

DNN model for active exploration toward the best sequence. 

A GA algorithm starts by generating an initial population (i.e., 

an initial set of sequences). This initial population is sorted based 

on the surrogate modelôs estimation of distortion. The initial 

population then is used to produce children (new set of 

sequences) for the next generation (iteration) of search. 

ñCrossoverò between two parents (initial sequences) and 

ñMutationò of a parent are the common GA tools to generate 

children (new sequences). However, for the welding sequence, 

GAôs functions shall satisfy some constraints to generate a 

correct sequence. For example, a weld pass cannot be repeated 

in a sequence including in a different direction. 

A modified GA algorithm was developed for weldôs ñCrossoverò 

and ñMutationò functions. This GA algorithm was integrated 

with our surrogate model to explore the design space of welding 

sequences. 

For a crossover, a proper sequence (parent_a) was found in the 

population by using the N-way tournament selection method for 

the lowest distortion. Another right sequence (parent_b) was 

found for parent_a using an auxiliary function, ñMatch Finderò 

to assure compatibility of parents for the welding constraints. 

Finally, crossing parent_a and parent_b over random weld 

passes, generated two new sequences (children). Figure 6 shows 

a schematic example of the algorithm implemented for 

crossover. 

For a mutation, a good parent was selected from the population 

by using the same tournament selection method. Two random 

positions were picked along the sequence, and the corresponding 

welds were switched. The algorithm was set to change the 

direction with 50% likelihood. Figure 7 shows a schematic 

example of the algorithm implemented for mutation. 

 

 

 

Figure 6: Crossover schematic for the evolution of weld sequences in 

GA. 

 

Figure 7: Mutation schematic for the evolution of weld sequences in 

GA. 
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8. PANEL DISTORTION CONTROL 
Table 5 partially shows the training set that was generated for 11 

weld passes where all weld passes, and directions occur at least 

once in every position as well as every pair occurs at least once 

somewhere in sequence [19]. Our optimal training set had 61 

weld sequences that were used for training with the high 

likelihood of weld resemblance. 

   

Table 5: Partial presentation of an optimal training set for 11 weld 

passes. 

 

An ML-based digital-twin of the structure was through a series 

of independent ML models where each represents the deposited 

weld, except for the first weld that has an identical FEA solution. 

A DNN defines the history of weld sequence deposition and 

makes a prediction when informed with physical components of 

the feature vector explained earlier.  The DNN hyper-parameters 

(here, ñdropoutò, Number of hidden layersò, ñnumber of neurons 

in every hidden layerò, and ñlearning rateò) were automatically 

optimized by a Bayesian Optimization tool (SciKit Optimize). 

Figure 8 to Figure 19 compare ML prediction and FEA 

prediction of distortion on the panel after depositing each weld 

pass for a weld sequence (fGHaJDcEKbi) outside of the training 

set. ML prediction performs better in terms of accuracy for initial 

depositions than the later ones when compared with FEA; 

however, the CPU time for ML prediction was instantaneous on 

a modest processor such as in iPad vs. FEA with several hours of 

CPU time on an HPC server. 

 

 

Figure 8: Comparing ML prediction (left) with FEA prediction 

(right) after depositing 1st weld in sequence fGHaJDcEKbi 

 

 

Figure 9: Comparing ML prediction (left) with FEA prediction 

(right) after depositing 2nd weld in sequence fGHaJDcEKbi 

 

 

Figure 10: Comparing ML prediction (left) with FEA prediction 

(right) after depositing 3rd weld in sequence fGHaJDcEKbi 

 

 

Figure 11: Comparing ML prediction (left) with FEA prediction 

(right) after depositing 4th weld in sequence fGHaJDcEKbi 

 

 

Figure 12: Comparing ML prediction (left) with FEA prediction 

(right) after depositing 5th weld in sequence fGHaJDcEKbi 
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Figure 13: Comparing ML prediction (left) with FEA prediction 

(right) after depositing 6th weld in sequence fGHaJDcEKbi 

 

 

Figure 14: Comparing ML prediction (left) with FEA prediction 

(right) after depositing 7th weld in sequence fGHaJDcEKbi 

 

 

Figure 15: Comparing ML prediction (left) with FEA prediction 

(right) after depositing 8th weld in sequence fGHaJDcEKbi 

 

 

Figure 16: Comparing ML prediction (left) with FEA prediction 

(right) after depositing 9th weld in sequence fGHaJDcEKbi 

 

 

Figure 17: Comparing ML prediction (left) with FEA prediction 

(right) after depositing 10th weld in sequence fGHaJDcEKbi 

 

 

Figure 18: Comparing ML prediction (left) with FEA prediction 

(right) after depositing 11th weld in sequence fGHaJDcEKbi 

 

 

Figure 19: Comparing ML prediction (left) with FEA prediction 

(right) after cool down of sequence fGHaJDcEKbi 

 

The digital-twin of the panel structure  was coupled with the GA 

search algorithm for improving the distortion. GA was 

performed on 100 new weld sequences in population. Table 6 

shows the top 10 sequences after 50 generations of evolution 

with the lowest distortion (i.e., Eq. 2). We selected the top 5 for 

FEA verification and as the best candidate of the lowest 

distortion. Weld sequence ñGebjcIfaDhkò was selected out of 

these candidates as the best sequence with the low distortion 

shown in Figure 20. 

If one decides to continue for a better distortion, it is 

recommended to select ñnò lowest fidelity scores from the GA 

search to add FEA to the training set and reconstruct the 

surrogate model. We implemented an iteration of training to 
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show it. Figure 21 shows the weld sequence ñidefJHgabcKò can 

generate lower diction than other candidates can. 

Iteration of re-training the surrogate model can be repeated until 

the whole design space is covered, and for a large design space, 

the limitation is the availability of computational resources and 

the projectôs schedule to achieve a good distortion. 

 

Table 6 The top 10 sequences after 50 generations of evolution with 

the lowest distortion. 

 

 
Figure 20: The best selection of distortion from the weld sequence 

ñGebjcIfaDhkò with no iteration of training. 

 
Figure 21: An improved selection of distortion resulted from the weld 

sequence ñidefJHgabcKò after one iteration of re-training. 

9. CONCLUSION 
Constructing a digital twin of manufacturing processes such as 

those involving welding is now practical. A responsive digital 

twin is a hybrid digital twin that combines simulation tools with 

machine learning algorithms for data-driven prediction using 

limited data for manufacturing and fabrication applications. This 

hybrid approach is different from typical big data analysis. It 

becomes more attractive when our engineers deal with complex 

processes or structures with CPU time as the bottleneck of 

engineering decisions. Active learning methodology, together 

with theory-guided machine learning, are useful tools for the 

wise exploration of a training set for gaining fidelity with a 

minimal number of data. The hybrid digital twin uses FEA 

simulation for training ML networks, so using a validated FEA 

is critical for an appropriate presentation of the reality in this 

hybrid approach.  Nevertheless, the skill of our engineers is 

paramount for using these tools for developing an innovative 

solution to our manufacturing challenges. 
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