Thinking about the Weld Defects – Defining Acceptance Criteria beyond the Standard

Mahyar Asadi, PhD PEng IWE
• Replace
• Retire
• Repair
• Rerate
• Revisit

FFS
API 579 / BS7910
Criticality and Time left for defect
Flaw acceptance criteria in welding standards are typically based on normally achievable workmanship criteria and are conservative.

Defect Size?

Porosity with 20% WT
Exposed to Fatigue loading
Endurance threshold 140 MPa
(Grey color < 140 MPa)
Flaw acceptance criteria in welding standards are typically based on normally achievable workmanship criteria and are conservative.
Defect Size?

Flaw acceptance criteria in welding standards are typically based on normally achievable workmanship criteria and are conservative.

Porosity with 20% WT
Exposed to Fatigue loading
Endurance threshold 140 MPa
(Grey color < 140 MPa)
Flaw acceptance criteria in welding standards are typically based on normally achievable workmanship criteria and are conservative.
Flaw acceptance criteria in welding standards are typically based on normally achievable workmanship criteria and are conservative.

Porosity with 20% WT
Exposed to Fatigue loading
Endurance threshold 140 MPa
(Grey color < 140 MPa)
Flaw acceptance criteria in welding standards are typically based on normally achievable workmanship criteria and are conservative.
Flaw acceptance criteria in welding standards are typically based on normally achievable workmanship criteria and are conservative.

Porosity with 20% WT
Exposed to Fatigue loading
Endurance threshold 140 MPa
(Grey color < 140 MPa)
Flaw acceptance criteria in welding standards are typically based on normally achievable workmanship criteria and are conservative.

Porosity with 20% WT
Exposed to Fatigue loading
Endurance threshold 140 MPa
(Grey color < 140 MPa)
Flaw acceptance criteria in welding standards are typically based on normally achievable workmanship criteria and are conservative.

Porosity with 20% WT
Exposed to Fatigue loading
Endurance threshold 140 MPa
(Grey color < 140 MPa)
Flaw acceptance criteria in welding standards are typically based on normally achievable workmanship criteria and are conservative.

Porosity with 20% WT
Exposed to Fatigue loading
Endurance threshold 140 MPa
(Grey color < 140 MPa)
Flaw acceptance criteria in welding standards are typically based on normally achievable workmanship criteria and are conservative.
Flaw acceptance criteria in welding standards are typically based on normally achievable workmanship criteria and are conservative.
Why location is ignored?

- It is linked to design and stress analysis
- Conventional NDT is not good for finding the exact location of flaw
- Challenge of quantitative analysis of multiple flaws.

15 pores + 1 LOF detected
Why location is ignored?
- It is linked to design and stress analysis
- Conventional NDT is not good for finding the exact location of flaw
- Challenge of quantitative analysis of multiple flaws.
If you can precisely determine:

- Size,
- Shape,
- Orientation,
- & Location

of your flaw in your structure, FFS standards allow you for case-specific decision on acceptability or rejection.
ASSESSMENT OF RETROFIT OPTIONS
ASSESSMENT OF RETROFIT OPTIONS
Wonky welds keep West Coast submarines stuck in port
Assessment of Defect Criticality
Assessment of Defect Criticality
Assessment Beyond Standard

Full Scale Model

Three Welded Connections

Top Connection

Mid Connection

Btm Connection
Assessment Beyond Standard

Top Connection

Mid Connection

Btm Connection

Design Load on each Connection
Assessment Beyond Standard

- **Top Connection**
 - Local Axial Stress: 65 MPa
 - Max Axial Tension: 90 MPa
 - Local Shear Stress: 9 MPa

- **Mid Connection**
 - Local Axial Stress: 58 MPa
 - Max Axial Tension: 10 MPa
 - Local Shear Stress: 12 MPa

- **Btm Connection**
 - Local Axial Stress: 65 MPa
 - Max Axial Tension: 90 MPa
 - Local Shear Stress: 9 MPa
Different defect scenario embedded into this location

<table>
<thead>
<tr>
<th>Location of defect</th>
<th>Largest acceptable defect (mm)</th>
<th>Linear (width x length)</th>
<th>Volumetric (diameter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weld Root, Wall Bevel to Flange</td>
<td></td>
<td>1x5 or 2x4</td>
<td>2</td>
</tr>
<tr>
<td>Weld Root, Radially Oriented, Reinforcement Fillet</td>
<td></td>
<td>1x5 or 2x4</td>
<td>2</td>
</tr>
<tr>
<td>Weld Root, Axially Oriented, Reinforcement Fillet</td>
<td></td>
<td>1x7 or 2x5</td>
<td>2</td>
</tr>
<tr>
<td>Weld Root, Longitudinal Weld</td>
<td></td>
<td>1x3</td>
<td>1</td>
</tr>
</tbody>
</table>
Wrap-up

Definitely, standards are the most practical and key references and guides to use.

But if you have a defendable reason for an alternative option beyond the standard, this shall not be interpreted as an act against the standard and existing practice.

Alternative option beyond the standard is a standard (FFS)
Wrap-up

Definitely, standards are the most practical and key references and guides to use.

But if you have a defendable reason for an alternative option beyond the standard, this shall not be interpreted as an act against the standard and existing practice.

Alternative option beyond the standard is a standard (FFS)

Thank-you