AI Challenges in Cyber Manufacturing

Mahyar Asadi, PhD PEng IWE
mahyar.asadi@applusrtd.com
The smart factory represents a leap forward from self-contained automation to fully connected and intelligent manufacturing systems with learning capability over time.
Cyber Physical System

The smart factory represents a leap forward from self-contained automation to fully connected and intelligent manufacturing systems with learning capability over time.
Smarting Factories

1. Experience-based Smarting
2. Knowledge-based Smarting
Knowledge-Based Smarting

Benefit & Challenges

Knowledge-based Smarting

1. Dealing with Limited Data

2. Digital Twin Response Time
Combinatorial Optimization

\((2^N) \times N!\) Possibilities

Over 80 Bn choices

<table>
<thead>
<tr>
<th>N</th>
<th>((2^N) \times N!)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>384</td>
</tr>
<tr>
<td>5</td>
<td>3840</td>
</tr>
<tr>
<td>6</td>
<td>46080</td>
</tr>
<tr>
<td>7</td>
<td>645120</td>
</tr>
<tr>
<td>8</td>
<td>10321920</td>
</tr>
<tr>
<td>9</td>
<td>1.86E+8</td>
</tr>
<tr>
<td>10</td>
<td>3.72E+9</td>
</tr>
<tr>
<td>11</td>
<td>8.17E+10</td>
</tr>
</tbody>
</table>
Active Learning
• Optimal Exploration Design (Interactive & Iterative)

Quick Learning
• Faster, more observation of \((2^n)\times n!\) Possibilities
Responsive Cyber Twin

Sequence (?????????????)

Responsive Cyber Twin

Displacement
\[X_1, X_2, X_3, \ldots, X_n \]
\[Y_1, Y_2, Y_3, \ldots, Y_n \]
\[Z_1, Z_2, Z_3, \ldots, Z_n \]

\[2^{11} \times 11! = 81,789,600 \] possible sequences
Responsive Cyber Twin

Sequence

Responsive Cyber Twin

Displacement

$X_1, X_2, X_3, \ldots X_n$

$Y_1, Y_2, Y_3, \ldots Y_n$

$Z_1, Z_2, Z_3, \ldots Z_n$

$2^{11} \times 11! = 81.7 \text{ Bn possible sequences}$
A set of sequence with high likelihood of resemblance (61 Scenarios)

- DHBaCkjiFEg
- BjkgHfcdEi
- JaIkFCdGhEB
- fJICGDEaBhk
- ejKaFBghDci
- AcgFDjEHlbK
- hFkIaGjDCBE
- KHCDAlEJfgb
- kFjiGEdacHb
- CEBkgJdaflh
- fhGEjIBdaKC
- HeKbIgadJfC

Each weld occurs at least once at every location

Each pair occurs at least once in the sequence

\[2^{11} \cdot 11! = 81.7 \text{ Bn possible sequences} \]
2^{11} \cdot 11! = 81.7 \text{ Bn possible sequences}
2^{11} \cdot 11! = 81.7 \text{ possible sequences}
Physics-Guided Mach. Lrn (PGML)

Welds Position
Welds Vicinity
Welds Orientation
Weld Resemblance

Sequence
(?????????????)

Responsive Cyber Twin

Displacement
$X_1, X_2, X_3, \ldots X_n$
$Y_1, Y_2, Y_3, \ldots Y_n$
$Z_1, Z_2, Z_3, \ldots Z_n$

$2^{11} \times 11! = 81.7 \text{ Bn possible sequences}$
Training set for machine learning (61 scenarios)

- DHBaCkjiFEg
- fJICGDEaBhk
- hFkIaGjDCBe
- CEbkgJdafIh
- fhGEjIBdaKC

- bjkagHfcdEi
- ejKaFBghDci
- AcgFDjEHlbK
- kFjiGEdacHb
- HeKbIgadJfC

Displacement

\[X_1, X_2, X_3, \ldots, X_n \]
\[Y_1, Y_2, Y_3, \ldots, Y_n \]
\[Z_1, Z_2, Z_3, \ldots, Z_n \]

\[2^{11} \times 11! = 81.7 \text{Bn possible sequences} \]
Cyber Twin Validation

ML-Shadow FEM

Training set for machine learning

DHBaCkjiFEg bjkagHfcdEi JaIkFCdGhEB
fJICGDEaBhk ejKaFBghDci AcgFDjEHbK
hFkIaGjDCBE KHCDAlEjfgb kFjiGEDacHb
CEbkgJdaflh fhGEjIBdaKC HeKbIgdJfC

fGHaJDcEKbi
Cyber Twin Validation

ML-Shadow FEM

Training set for machine learning

- DHBaCkjiFEg bjkagHfcdEi JaIkFCdGhEB
- fJICGDEaBhk ejKaFBghDci AcgFDjEHlbK
- hFkJaGjDCBE KHCDAleJfgb kFjiGEDacHb
- CEkkgJdaflh fhGEjIBdaKC HeKblIgadJfC

fGHaJDcEKbi
Training set for machine learning

DHBaCkjiFEg bjkagHfcdeI JaIkFCdGhEB
fJICGDEaBhk ejKaFBghDci AcgFDjEHibK
hFkIaGjDCBE KHCDAlieJfgb kFjiGEdacHb
CEbkgJdafaIh fhGEjIBdaKC HeKblgdJfC

fGHaJDcEKbi
Training set for machine learning

- DHBaCkjiFEg
- fJICGDEaBhk
- hFkIaGjDCBE
- CEbkgJd aflh

- bjkagHfcdei
- ejKaFBghDci
- KHCDAl ejfgb
- fhGEjIBdaKC

- JaIkFCdGhEB
- AcgFDjEHibK
- kFjiGEdachb
- HeKblgadJfc
Cyber Twin Validation

ML-Shadow	FEM
fGHaJ
fGHaJD
fGHaJDc
fGHaJDcE

ML-Shadow	FEM
fGHaJDcK
fGHaJDcKb
fGHaJDcKbi

Cool Down
Active Learning
• Optimal Exploration Design (Interactive & Iterative)

Quick Learning
• Faster, more observation of \((2^n)xn\) Possibilities
VAST DESIGN EXPLORATION

Sequence (????????????)

Responsive Cyber Twin

Displacement
$X_1, X_2, X_3, \ldots X_n$
$Y_1, Y_2, Y_3, \ldots Y_n$
$Z_1, Z_2, Z_3, \ldots Z_n$

$2^{111} 11! = 8.17 \times 10^{10}$ possible sequences
Evolution of Smart Selection

Training set for machine learning (61 scenarios)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Sequence</th>
<th>objective</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GhecDjdshk</td>
<td>0.999</td>
<td>0.597</td>
</tr>
<tr>
<td>2</td>
<td>jehbDGenlK</td>
<td>0.939</td>
<td>0.556</td>
</tr>
<tr>
<td>3</td>
<td>GbgejfeDhk</td>
<td>0.991</td>
<td>0.522</td>
</tr>
<tr>
<td>4</td>
<td>jehbDGlhSk</td>
<td>1.061</td>
<td>0.550</td>
</tr>
<tr>
<td>5</td>
<td>LebeGfghlK</td>
<td>0.947</td>
<td>0.478</td>
</tr>
<tr>
<td>6</td>
<td>EbcgcDjGhK</td>
<td>1.118</td>
<td>0.543</td>
</tr>
<tr>
<td>7</td>
<td>jbcgjGeLdk</td>
<td>1.310</td>
<td>0.595</td>
</tr>
<tr>
<td>8</td>
<td>EbcgcDjGhK</td>
<td>1.148</td>
<td>0.521</td>
</tr>
<tr>
<td>9</td>
<td>jehbDGenlK</td>
<td>1.161</td>
<td>0.514</td>
</tr>
<tr>
<td>10</td>
<td>sBsjjGcDlhlK</td>
<td>1.273</td>
<td>0.540</td>
</tr>
</tbody>
</table>

Displacement

- $X_1, X_2, X_3, \ldots, X_n$
- $Y_1, Y_2, Y_3, \ldots, Y_n$
- $Z_1, Z_2, Z_3, \ldots, Z_n$
Evolution of Smart Selection

Active Learning

Quick Learning

(G, e, b, j, c, l, f, a, D, h, k)

(i, d, e, f, J, H, g, a, b, c, K)
1. Click “Run” to weld the given sequence
 • A report is generated upon job completion;
Active Learning
to explore large design spaces with limited data (not typical big data mining)

Quick Learning
to enable interactive and iterative navigation and response time (not conventional FEA simulations)

Architecture of Smarting
Smart systems are not explicit programing, they are architectured to learn continually (autonomous vs. smart machine)
Active Learning
to explore large design spaces with limited data (not typical big data mining)

Quick Learning
to enable interactive and iterative navigation and response time (not conventional FEA simulations)

Architecture of Smarting
Smart systems are not explicit programming, they are architectured to learn continually (autonomous vs. smart machine)